
WiPal
IEEE 802.11 traces manipulation software

This manual is for WiPal (version 1.0, updated 16 January 2008.)
Copyright c© 2008 Université Pierre et Marie Curie – Paris 6

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the ‘COPYING.DOC’ file at the WiPal package’s root directory.

1

WiPal is a piece of software dedicated to IEEE 802.11 traces manipulation. It comes as a
set of programs and a C++ library. A distinctive feature of WiPal is its merging tool, which
enables merging multiple wireless traces into a unique global trace. WiPal’s key features
are flexibility, ease of use, and efficiency.

i

Table of Contents

1 The programs . 2
1.1 Invocation . 2

1.1.1 Available options . 2
1.1.2 Input syntax . 4

1.2 Concatenation (and Prism noise filtering) . 4
1.3 Comparisons . 5
1.4 Sub-traces . 5
1.5 Merging . 5
1.6 Synchronization . 6
1.7 Unique frames . 6
1.8 Duplicate data frames . 7
1.9 Undocumented programs . 7

2 The library . 8

3 FAQ . 9
3.1 What systems does WiPal support? . 9
3.2 What are WiPal’s requirements?. 9
3.3 How do I install WiPal? . 9
3.4 Are there any options to optimize WiPal when building it? 10
3.5 Do WiPal’s tools have a verbose mode to report extra information

about their operation? . 10
3.6 You say WiPal is flexible and customizable. Is there a way to

customize WiPal’s tools beyond the options they propose? 10
3.7 ‘configure’ complains it did not find library X? 11
3.8 ‘configure’ complains it found library X ’s headers, but is unable

to link? . 11
3.9 ‘configure’ complains library X ’s headers are unusable, despite

successful linking? . 11
3.10 Do you have a list of WiPal’s bugs? . 11
3.11 I have found a bug, what should I do? . 11
3.12 I would really love having feature X implemented! 12
3.13 I have a question this file did not answer! 12

Index . 13
Program index . 13
Concept index . 13

Chapter 1: The programs 2

1 The programs

This part documents the programs WiPal features. Looking for a specific command? See
[Program index], page 13.

1.1 Invocation

WiPal’s programs all use the same invocation scheme:

wipal-<command> [options] [inputs] [outputs]

The command line may include no options and, depending on the program, there may
be no inputs or no outputs. Most programs expect at least one input however. See the
specific documentation for each program in order to know how many inputs and outputs
each program expects.

Inputs, outputs, and options may be mixed on the command line, e.g.:

wipal-windowed-merge -n -P input1.pcap input2.pcap output.pcap
wipal-windowed-merge input1.pcap input2.pcap output.pcap -P -n
wipal-windowed-merge input1.pcap -n input2.pcap -P output.pcap
...

are all equivalent.

WiPal’s programs use getopt(3) to parse options, so they only have short options (no
long options) composed of a dash followed by a letter (e.g. ‘-a’, ‘-t’, etc.) Option letters
always have the same meaning whatever the program. All options are not available for all
programs though (some options do not make sens with some programs). For instance, ‘-P’
always means the invoked program should consider frames with non-zero Prism fields as
invalid. In order to know which options a program accept, use the ‘-h’ option.

Finally, some options expect an extra argument right after they are provided:

wipal-test-uniqueness -a timestamp input.pcap
^^^^^^^^^
This is not an input

1.1.1 Available options

‘-8’ When comparing two packets, only compare IEEE 802.11 frames. Do not com-
pare Prism or PCAP headers.

‘-a’ Specify which attributes (frame fields) the program must use to identify unique
frames. An attribute specifier must follow this option on the command line.
To see a list of valid attribute specifiers, use the ‘-h’ option. See Section 1.7
[Unique frames], page 6.

‘-b’ When comparing two packets, only compare packet bytes. Do not compare
PCAP headers.

‘-c’ Do not print column headers. This is the default when standard output is not
a TTY.

‘-C’ Do print column headers. This is the default when standard output is a TTY.

Chapter 1: The programs 3

‘-d’ When comparing two packets, compare everything: PCAP headers and packet
bytes. This is the default.

‘-e’ In table outputs, do not use a column to report error values. This is the default.

‘-E’ In table outputs, do use a column to report error values.

‘-h’ Help. Print a short summary describing how one should invoke the program,
which options it accepts, and possibly which attribute specifiers are accepted
for option ‘-a’.

‘-i’ In table outputs, do not print frame indices.

‘-I’ In table outputs, do print frame indices. This is the default.

‘-m’ Specify the address mapping file. An address mapping file maps 6 bytes MAC
identifiers to 32 bit integers. The only purpose of such a mapping is to im-
prove performances. The file is just a plaintext file with an integer and a MAC
identifier on each line.
A filename should follow this option. The file might not exist (in which case it
will be created). If it exist, it might be extended, but will not be truncated.
When not specified, the ‘mapping’ filename is used.

‘-n’ Consider Prism headers are little endian. This is the default when the corre-
sponding PCAP file is little endian. Note that some broken traces are big endian
yet have little endian Prism headers. Thus this option.

‘-N’ Consider Prism headers are big endian. This is the default when the corre-
sponding PCAP file is big endian.

‘-p’ In Prism headers, do not consider noise fields have a special meaning. This is
the default.

‘-P’ In Prism headers, consider non-null noise fields indicate a PHY error, and thus
an invalid frame. Such frames will be ignored, e.g. with wipal-cat they will
not appear in the output.
This option implicitly implies the input trace is composed of Prism headers (as
PCAP link type).

‘-q’ Quiet. Produce minimal output.

‘-r’ Blacklist a given reference frame. The reference frame will then be ignored
and will not be used during synchronization. See Section 1.6 [Synchronization],
page 6.
A reference frame identifier must follow this option, e.g. 42-51 (indicating the
reference frame composed of the unique frames 42 and 51).
You may use this option multiple times, e.g.

wipal-simple-merge -r 42-51 -r 666-505 \
input1.pcap input2.pcap output.pcap

will blacklist both references 42-51 and 666-505.

‘-t’ When comparing two packets, only compare IEEE 802.11 frames, along with the
host and MAC time of Prism headers. Compare time values with a precision of

Chapter 1: The programs 4

106 microseconds (that is, assume two values are equal when they are spaced
by less than 106 microseconds).
This option implicitly implies the input trace is composed of Prism headers (as
PCAP link type).

‘-u’ In table outputs, do not print microsecond timestamps. This is the default.

‘-U’ In table outputs, do print microsecond timestamps.

‘-v’ Display the program’s version (actually the version of the WiPal’s package the
program come from).

1.1.2 Input syntax

Basic usage
You may provide the name of a PCAP trace file as input.

wipal-cat input.pcap output.pcap

Advanced usage
You may provide the name of several PCAP traces separated with columns (do
not include any space). This tells the program to consider the concatenation of
each trace as a single input.

wipal-cat input1.pcap:input2.pcap:input3.pcap output.pcap

will put into ‘output.pcap’ the content of ‘input1.pcap’, followed by the con-
tent of ‘input2.pcap’ and then ‘input3.pcap’.
Every programs understand this syntax. Note that specifying multiple traces
with columns makes no sense for outputs:

wipal-cat input1.pcap:input2.pcap output1.pcap:output2.pcap

will concatenate ‘input1.pcap’ and ‘input2.pcap’ into a single file named
‘output1.pcap:output2.pcap’!

1.2 Concatenation (and Prism noise filtering)

One may concatenate traces using the wipal-cat command. It takes exactly one input and
one output. It may be useful to recombine a trace that was split, or filter out frames with
Prism noise (using the ‘-P’ option).

wipal-cat in.pcap out.pcap
wipal-cat foo.pcap.0:foo.pcap.1 foo.pcap
wipal-cat -P in.pcap out.pcap
wipal-cat -P bar.pcap.0:bar.pcap.1:bar.pcap.2 bar.pcap

The first example just copies ‘in.pcap’ into ‘out.pcap’. Note that the two files might
be different at the byte level, e.g. if ‘in.pcap’ is big endian and the program is run on a
little endian machine.

The second example concatenate ‘foo.pcap.0’ and ‘foo.pcap.1’ and put the result into
‘foo.pcap’.

The third example copies ‘in.pcap’ into ‘out.pcap’ but removes frames that have a
non-zero noise field in their Prism headers.

The fourth example both concatenates traces while filtering noisy frames out.

Chapter 1: The programs 5

1.3 Comparisons

One may test two PCAP traces for equivalence using the wipal-cmp command. The default
is to compare every bits of information (PCAP headers plus packet bytes) but you may
change this behavior using the ‘-8’, ‘-b’, or ‘-t’ options. Note that this is different however
to using diff or cmp since traces with different endianness may contain the same packets.

By default wipal-cmp produces a report indicating either that traces are equal, either
which packet is the first to mismatch. Use ‘-q’ if you are only interested in the program’s
exit status and do not want to produce any output.

e.g.:
wipal-cmp foo.pcap bar.pcap
wipal-cmp -q foo.pcap bar.pcap
wipal-cmp -q -8 in1.pcap.0:in1.pcap.1 in2.pcap
...

1.4 Sub-traces

One may extract sub-traces of PCAP traces using wipal-extract-subtrace. It takes two
dates and a PCAP trace as inputs, and produces one output. Unfortunately, it does not
support any option currently.

e.g.:
wipal-extract-subtrace 2007-01-01 2008-01-01 \

in.pcap.0:in.pcap.1 out.pcap

wipal-extract-subtrace \
"2004-Aug-30 16:59:39.789221" "2004-Aug-30 16:59:39.929872" \
kalahari-ath2 subtrace.pcap

1.5 Merging

One may merge two IEEE 802.11 traces into one using the wipal-simple-merge or wipal-
windowed-merge commands. Both commands use the same trace synchronization mech-
anism, yet their merging algorithms differ. wipal-windowed-merge’s merging algorithm
uses sliding windows of frames on its inputs, hence its name. wipal-simple-merge uses a
simpler algorithm that has some flaws in some very specific cases. We therefore recommend
you not use it unless you know what you are doing.

Both commands have the same syntax (use the ‘-h’ option to have a description). They
take two inputs and produce one output. When ran, the merging process starts by synchro-
nizing precisely both inputs (see Section 1.6 [Synchronization], page 6). Then both traces
are merged and special care is given not to re-order packets or account duplicate packets
twice in the output (that is, packets that are present in both traces appear only once in the
output).

These commands expect PCAP traces with Prism headers as link type.
e.g.:

wipal-windowed-merge a.pcap b.pcap output.pcap
wipal-windowed-merge -P -n foo-ath2.0:foo-ath2.1 bar-ath2 foo-bar-ath2
...

Chapter 1: The programs 6

1.6 Synchronization

In order to merge two IEEE 802.11 traces WiPal needs to synchronize them precisely. In
order to do so, it first identifies some frames that appear in both inputs. These are reference
frames. It uses these frames to model clock desynchronization among the traces. It then
update the first trace’s timestamps so they are synchronized with the second trace.

One may use the wipal-synchronize command to synchronize two traces. It takes two
inputs and produce one output. The output contains the same packets as the first input,
but with synchronized timestamps.

To extract reference frames WiPal extract some specific frames called unique frames
(see Section 1.7 [Unique frames], page 6) from both input traces and then intersect the
two obtained sets. One may use the wipal-intersect-unique-frames command to get
the result of this operation (i.e. the list of reference frames used for synchronization of two
traces).

WiPal’s synchronization process synchronizes reference frames before it synchronizes
other frames. One may get the result of this operation using the wipal-synchronize-
unique-frames command.

e.g.:
wipal-intersect-unique-frames -n -P foo.0:foo.1:foo.2 bar.0:bar.1
wipal-synchronize-unique-frames -n -P foo.0:foo.1:foo.2 bar.0:bar.1
wipal-synchronize -n -P foo.0:foo.1:foo.2 bar.0:bar.1 foo-sync

1.7 Unique frames

A frame is said to be unique when it appears in the air once and only once for the whole
duration of a trace. WiPal’s unique frame extraction process is an important stage of its
trace synchronization process. WiPal considers all beacon frames and all non-retransmitted
probe responses as unique frames.

One may use the wipal-extract-unique-frames command to get a list of the unique
frames that compose a trace. Run wipal-extract-unique-frames -h to get its invocation
syntax.

In practice, the extraction process operates on a subset of frame fields, which we call
frame identifiers (or frame attributes). Only these fields are stored into memory and used
for comparison. One must be careful when choosing which fields to extract and use for
comparisons. Selecting too few fields results in collisions (distinct unique frames sharing
identical identifiers.) Selecting too much fields result in unnecessary performance and mem-
ory overhead.

One may check that a given trace’s unique frames are really unique w.r.t. unique frame
attributes using the wipal-test-uniqueness command. This command finds collisions
inside its input traces. You might specify different frame attributes using the ‘-a’ option.

Some other programs need to extract unique frames (e.g. wipal-windowed-merge or
wipal-synchronize) yet do not have a ‘-a’ option. They use the seqctl-bssid-timestamp
attribute.

e.g.:
wipal-test-uniqueness -P -a timestamp foo.pcap.1:foo.pcap.2
wipal-extract-unique-frames -P foo.pcap.1:foo.pcap.2 > foo-unique.txt

Chapter 1: The programs 7

1.8 Duplicate data frames

One may use the wipal-find-data-dups command to search some invalid data frames.
It looks into traces on a per-sender basis for successive duplicate data frames (it only
considers non-retransmitted frames). Such cases should not occur in theory - as it ignores
retransmissions, successive data frames from the same sender should at least show variations
in their sequence numbers. Surprisingly, some traces contain such anomalies: identical data
frames that are not retransmissions and are only spaced by a few milliseconds. We have no
explanations why some datasets exhibit those phenomena.

e.g.:
wipal-find-data-dups foo.pcap.0:foo.pcap.1:foo.pcap.2

1.9 Undocumented programs

WiPal’s configure script has two options ‘--enable-probe-stats’ and
‘--enable-wit-import’. These options enable the build of several programs, namely
wipal-probe-stats, wit-create-datafiles, wit-create-tables-and-load-data, and
wit-import. By default the build of those programs is disabled.

Those are legacy programs that were useful to somebody once, yet are incomplete and
flawed. They will not be updated later, and are not documented here. Build and use at
your own risks!

Chapter 2: The library 8

2 The library

A C++ library also compose WiPal. WiPal programs all use this library. At a low level
it provides various convenience tools (PCAP file input/output, random access to PCAP
traces, support for various static C++ techniques, etc.) At an upper level it provides a
generic IEEE 802.11 frame parser that is easy to customize and re-use. Finally, it provides
various mechanisms to synchronize and merge PCAP traces directly from C++ code.

The library is called libwipal and its headers are located in $(prefix)/include/wipal.
You should be able to include them as follows:

#include <wipal/pcap/descriptor.hh>
// ...

You will then need to provide the ‘-lwipal’ option to your compiling/linking tools.
The main documentation for this library is provided as a Doxygen documentation.

It should be installed into WiPal’s package data directory, into the ‘doxygen’
subdirectory. By default this gives ‘/usr/local/share/wipal/doxygen/’. This
documentation is however a bit messy, and lacks some parts. The best entry point to
learn how to use the library is to look at some of WiPal’s tools’ source code (e.g. into
‘src/misc/wipal-find-data-dups.cc’). You may also want to have a look at WScout
which is another program that uses WiPal (some versions of WScout embeds WiPal under
the name trace-tools).

http://wscout.lip6.fr/

Chapter 3: FAQ 9

3 FAQ

3.1 What systems does WiPal support?

WiPal was designed using standard C++ and portable libraries. This means WiPal should
run fine on most systems (e.g. GNU/Linux, WhateverBSD, Mac OS, Windows, ...).

WiPal is however exclusively tested on Debian GNU/Linux (amd64 and, to a lower
extent, powerpc). Which means you might experience problems on other systems, which
the developers might not be aware of. In this case, please give feedback to them so they
can fix it. Anyway, there should be no major obstacle to WiPal’s portability.

3.2 What are WiPal’s requirements?

WiPal needs:
• A standard compliant C++ compiler. WiPal developers use GCC.
• The Boost C++ libraries. More specifically:

− array,
− date time,
− foreach,
− format,
− conversion/lexical cast,
− optional,
− smart ptr,
− tokenizer,
− tuple,
− variant.

• The GNU MP Bignum Library.

3.3 How do I install WiPal?

WiPal’s packaging follows the GNU conventions. An installation documentation is provided
in the ‘INSTALL’ file in the package’s root directory. However, with a standard system, the
following commands should do the trick:

mkdir _build
cd _build
../configure
make
make install
make check

On some systems, you might have to customize the ‘configure’ script’s invocation. e.g.:
mkdir _build
cd _build
../configure CPPFLAGS=-I/foo/bar/libgmp
make

http://gcc.gnu.org/
http://www.boost.org/
http://gmplib.org/

Chapter 3: FAQ 10

make install
make check

3.4 Are there any options to optimize WiPal when building
it?

You might want to compile WiPal with the NDEBUG preprocessor symbol defined. If you use
GCC you might also want to use its -O3 option. You can do that by running ‘configure’
with the following options:

./configure CPPFLAGS=-DNDEBUG CXXFLAGS=-O3

3.5 Do WiPal’s tools have a verbose mode to report extra
information about their operation?

There is no such options that can be activated dynamically. You might want however
to compile WiPal with the ENABLE_INFO preprocessor symbol defined. This will enable
the printing of some extra information in some tools as they run (e.g. number of processed
frames, synchronization error, etc.). Invoke the ‘configure’ script with the following option:

./configure CPPFLAGS=-DENABLE_INFO

Note however that this may slow some tools down and may require more memory.

3.6 You say WiPal is flexible and customizable. Is there a
way to customize WiPal’s tools beyond the options they
propose?

Yes! But this requires recompiling WiPal’s tools, and sometimes modifying a few lines of
their source code.
• You may change WiPal’s linear regression window (for trace synchronization) by defin-

ing the LRSYNC_WINDOW_SIZE macro symbol. Use the CPPFLAGS environment variable
for this. The default value is 3.
e.g.:

./configure CPPFLAGS=’-DLRSYNC_WINDOW_SIZE=42’

• You may change the windowed merging algorithm’s window size by defining the
WMERGE_WINDOW_SIZE macro symbol. Use the CPPFLAGS environment variable for this.
The default value is 3.
e.g.:

./configure CPPFLAGS=’-DWMERGE_WINDOW_SIZE=42’

• You may change the frame attributes (i.e. frame identifiers) to use in tools that do not
support the ‘-a’ option by modifying a few lines of their source code. For instance,
here is a diff that shows how to make wipal-windowed-merge use the seqctl-source-
bssid-timestamp attributes:

--- src/merging/wipal-merge.cc
+++ src/merging/wipal-merge.cc.new
@ -34,7 +34,7 @
#include <wipal/wifi/frame/filter/windowed_merge.hh>
#include <wipal/wifi/frame/filter/fast_intersector.hh>

Chapter 3: FAQ 11

#include <wipal/pcap/list_of_traces.hh>
-#include <wipal/wifi/frame/unique_id/seqctl_bssid_timestamp.hh>
+#include <wipal/wifi/frame/unique_id/seqctl_source_bssid_timestamp.hh>
#include <wipal/wifi/addr_mapping.hh>

namespace
@ -76,7 +76,7 @

using wifi::frame::filter::provide_merge;

typedef pcapxx::list_of_traces<> list_of_traces;
- typedef wifi::frame::seq_bss_tmp_id unique_id;
+ typedef wifi::frame::seq_src_bss_tmp_id unique_id;

typedef merged_trace_dumper<list_of_traces> merger;

wifi::addr_mapping mapping (options.mapping);

3.7 ‘configure’ complains it did not find library X?

Either library X is not installed on your system, either your system is not properly config-
ured, so the library cannot be found.

You may use the CPPFLAGS and LDFLAGS variables to correct this behavior.
e.g., run

./configure CPPFLAGS=-I/custom/path/include \
LDFLAGS=-L/custom/path/lib

3.8 ‘configure’ complains it found library X ’s headers, but
is unable to link?

Most probably library X is installed but its binaries are in a non-standard place. Use the
LDFLAGS variable as described previously.

3.9 ‘configure’ complains library X ’s headers are unusable,
despite successful linking?

Most probably library X is installed but its headers are in a non-standard place. Use the
CPPFLAGS variable as described previously.

3.10 Do you have a list of WiPal’s bugs?

No. We are not aware of any serious bug in WiPal. We take a special care at testing WiPal
with an automated test suite. Do not hesitate to report unknown bugs to the package’s
maintainers. We will hunt them.

With some tools, you might however encounter some strange behaviors when providing
invalid inputs (e.g. running wipal-find-data-dups a:b with ‘b’ having a link type different
from ‘a’). Consider that as a “feature”! ;-)

3.11 I have found a bug, what should I do?

Report it to the package’s maintainers.

mailto:thomas.claveirole@lip6.fr

Chapter 3: FAQ 12

3.12 I would really love having feature X implemented!

Give feedback to the package’s maintainers about the features you want. We might not have
the time to implement them, yet it is important for us to know when important features
are missing.

Regarding features you miss, you are greatly encouraged to contribute to WiPal. Again,
contact the package’s maintainers so they can help you implement new features.

3.13 I have a question this file did not answer!

Mail the package’s maintainers.

mailto:thomas.claveirole@lip6.fr

Index 13

Index

Program index

wipal-cat. 4
wipal-cmp. 5
wipal-extract-subtrace . 5
wipal-extract-unique-frames 6
wipal-find-data-dups . 7
wipal-intersect-unique-frames 6
wipal-probe-stats . 7
wipal-simple-merge . 5, 10

wipal-synchronize . 6

wipal-synchronize-unique-frames 6

wipal-test-uniqueness . 6

wipal-windowed-merge . 5, 10

wit-create-datafiles . 7

wit-create-tables-and-load-data 7

wit-import . 7

Index 14

Concept index

A
attributes . 2, 6, 10
Available options . 2

B
bug . 11

C
Comparisons . 5
Concatenation . 4
customizing . 10

D
data frames . 7
dependencies . 9
Doxygen . 8
Duplicate data frames . 7
duplicates . 6, 7

E
error . 11

F
feature . 12

I
input syntax . 4
installation . 9, 10
Invocation . 2

L
library . 8

M
Merging . 5, 10

O
optimizations . 10
options. 2

P
Prism noise filtering . 4
problem . 11
program syntax . 2, 4

R
reference frames . 6
request. 12
requirements . 9

S
Sub-traces . 5
support . 9
Synchronization . 6
syntax . 2, 4
system . 9

T
troubleshooting . 11

U
undocumented . 7
Unique frames . 6

V
verbose . 10

	The programs
	Invocation
	Available options
	Input syntax

	Concatenation (and Prism noise filtering)
	Comparisons
	Sub-traces
	Merging
	Synchronization
	Unique frames
	Duplicate data frames
	Undocumented programs

	The library
	FAQ
	What systems does support?
	What are 's requirements?
	How do I install ?
	Are there any options to optimize when building it?
	Do 's tools have a verbose mode to report extra information about their operation?
	You say is flexible and customizable. Is there a way to customize 's tools beyond the options they propose?
	configure complains it did not find library X?
	configure complains it found library X's headers, but is unable to link?
	configure complains library X's headers are unusable, despite successful linking?
	Do you have a list of 's bugs?
	I have found a bug, what should I do?
	I would really love having feature X implemented!
	I have a question this file did not answer!

	Index
	Program index
	Concept index

